Suppression of electron-vibron coupling in graphene nanoribbons contacted via a single atom.

نویسندگان

  • Joost van der Lit
  • Mark P Boneschanscher
  • Daniël Vanmaekelbergh
  • Mari Ijäs
  • Andreas Uppstu
  • Mikko Ervasti
  • Ari Harju
  • Peter Liljeroth
  • Ingmar Swart
چکیده

Graphene nanostructures, where quantum confinement opens an energy gap in the band structure, hold promise for future electronic devices. To realize the full potential of these materials, atomic-scale control over the contacts to graphene and the graphene nanostructure forming the active part of the device is required. The contacts should have a high transmission and yet not modify the electronic properties of the active region significantly to maintain the potentially exciting physics offered by the nanoscale honeycomb lattice. Here we show how contacting an atomically well-defined graphene nanoribbon to a metallic lead by a chemical bond via only one atom significantly influences the charge transport through the graphene nanoribbon but does not affect its electronic structure. Specifically, we find that creating well-defined contacts can suppress inelastic transport channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron-vibron coupling in suspended carbon nanotube quantum dots

Motivated by recent experiments, we investigate the electron-vibron coupling in suspended carbon nanotube quantum dots, starting with the electron-phonon coupling of the underlying graphene layer. We show that the coupling strength depends sensitively on the type of vibron and is strongly sample dependent. The coupling strength becomes particularly strong when inhomogeneity-induced electronic q...

متن کامل

Spin-dependent transport through interacting graphene armchair nanoribbons

We investigate spin effects in transport across fully interacting, finite size graphene armchair nanoribbons (ACNs) contacted to collinearly spin-polarized leads. In such systems, the presence of short ranged Coulomb interaction between bulk states and states localized at the ribbon ends leads to novel spin-dependent phenomena. Specifically, the total spin of the low energy many-body states is ...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

Probing DNA Translocations with Inplane Current Signals in a Graphene Nanoribbon with a Nanopore

Many theoretical studies predict that DNA sequencing should be feasible by monitoring the transverse current through a graphene nanoribbon while a DNA molecule translocates through a nanopore in that ribbon. Such a readout would benefit from the special transport properties of graphene, provide ultimate spatial resolution because of the single-atom layer thickness of graphene, and facilitate hi...

متن کامل

Conductance of T-shaped Graphene nanodevice with single disorder

Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013